Multi-scale local-global architecture for person re-identification

نویسندگان

چکیده

Abstract With the emergence of deep learning method, which has been driven a great success for field person re-identification (re-ID). However, existing works mainly focus on first-order attention (i.e., spatial and channels attention) statistics to model valuable information re-ID. On other hand, most methods operate data points respectively, ignores discriminative patterns some extent. In this paper, we present an automated framework named multi-scale local-global The consists two components. first component is that high-order module adopted learn subtle differences among pedestrians generate informative features. novel architecture spectral feature transformation designed make optimization group wise similarities. Furthermore, fuse components together form ensemble Extensive experiments were conducted three benchmark datasets, i.e., Market-1501, DukeMTMC-reID, CUHK03, showing superiority proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leveraging local neighborhood topology for large scale person re-identification

In this paper we describe a semi-supervised approach to person re-identification that combines discriminative models of person identity with a Conditional Random Field (CRF) to exploit the local manifold approximation induced by the nearest neighbor graph in feature space. The linear discriminative models learned on few gallery images provides coarse separation of probe images into identities, ...

متن کامل

Multi-Channel Pyramid Person Matching Network for Person Re-Identification

In this work, we present a Multi-Channel deep convolutional Pyramid Person Matching Network (MC-PPMN) based on the combination of the semantic-components and the colortexture distributions to address the problem of person reidentification. In particular, we learn separate deep representations for semantic-components and color-texture distributions from two person images and then employ pyramid ...

متن کامل

Local Descriptors Encoded by Fisher Vectors for Person Re-identification

This paper proposes a new descriptor for person reidentification building on the recent advances of Fisher Vectors. Specifically, a simple vector of attributes consisting in the pixel coordinates, its intensity as well as the first and second-order derivatives is computed for each pixel of the image. These local descriptors are turned into Fisher Vectors before being pooled to produce a global ...

متن کامل

Nonlinear Local Metric Learning for Person Re-identification

Person re-identification aims at matching pedestrians observed from non-overlapping camera views. Feature descriptor and metric learning are two significant problems in person re-identification. A discriminative metric learning method should be capable of exploiting complex nonlinear transformations due to the large variations in feature space. In this paper, we propose a nonlinear local metric...

متن کامل

Gaussian Descriptor Based on Local Features for Person Re-identification

This paper proposes a novel image representation for person re-identification. Since one person is assumed to wear the same clothes in different images, the color information of person images is very important to distinguish one person from the others. Motivated by this, in this paper, we propose a simple but effective representation named Gaussian descriptor based on Local Features (GaLF). Com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Soft Computing

سال: 2022

ISSN: ['1433-7479', '1432-7643']

DOI: https://doi.org/10.1007/s00500-022-06859-6